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SOLUBILITY. XII. REGULAR SOLUTIONS1 

BY JOEL H. HILDEBRAND 

RBCSIVBD JULY 23, 1928 PUBUSHBD JANUARY 8, 1929 

In a systematic study of deviations from Raoult's law, or other relations 
which may be derived from it, the author2 has made much use of solubility 
data for solids and has shown that, particularly among substances of low 
polarity, there exist families of solubility curves which bespeak a marked 
regularity even where the deviations are very large. Evidently, the 
equations for the curves belonging to these families for systems which 
we will call regular, are to be sought before those of divergent and often 
highly individualistic curves, shown by irregular systems. In the case 
of iodine, for example, the solvents which give a violet color, similar to 
that of iodine vapor, give regular solubility curves, while the solvents 
which give brown solutions give irregular curves. Fig. 1, giving solu­
bility curves for stannic iodide in various solvents found by plotting log N2, 
where N2 is the mole fraction of the solute, against 1/T, illustrates such a 
family of regular curves. I t has been easy to show that the positions of 
the curves accord fairly well with the differences in internal pressure 
between the solvents and the solute, but it has not heretofore been possible 
to get from the solubility data as a whole any simple measure of the de­
viations from Raoult's law, for the spacing of the curves depends upon 
the distance from the melting point of the solute. 

Mortimer,3 it is true, has given an approximate treatment by assuming 
that the solubility curves are straight lines converging to the melting point, 
the slopes representing the heats of solution calculable upon an additive 
basis from a table of relative internal pressures. While this treatment is 
practically useful for systems deviating but moderately from Raoult's 
law, it is unsatisfactory, first, because the solubility curves are not linear, 
as Mortimer himself recognized; second, because where the solute melts 
to give a second liquid phase, its solubility curve does not converge to the 
melting point, but behaves as does heptane in Fig. 1; and, third, because 
the slope of the solubility curve does not, in general, give directly the partial 
molal heat of solution but requires a correcting term to be discussed 
later. 

The course of the solubility curve for a solid depends upon the variation 
1 A brief preliminary paper has been published in the Proc. Nat. Acad. Set., 13, 

267 (1927). 
2 (a) Hildebrand, THIS JOURNAL, a series of ten papers beginning in 1916, cf. 

"Bibliography," ref. 2b, p. 200; (b) Hildebrand, "Solubility," American Chemical 
Society Monograph, Chemical Catalog Company, New York, 1924; (c) ref. 2(b), Chap. 
XIV, see also Dorfman and Hildebrand, THIS JOURNAL, 49, 729 (1927). 

3 Mortimer, THIS JOURNAL, 44,1416 (1922); 45, 633 (1923). 
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in its activity with both composition and temperature. Margules4 long 
ago suggested for the variation in activity, a^, with mole fraction, N2, of 
Component 2 of a binary liquid mixture, the expression 

In O2 = In N2 + 1AAN? + '/372N1
3 + 

and, similarly, with subscripts interchanged, for the other component. 
Porter5 called attention to a fact that had also been noted by the writer, 
i. e., that terms higher than N2 may be omitted for many systems. In 
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Fig. 1.—Solubilities of stannic iodide in: 1, carbon disulfide; 2, ethylene 
bromide; 3, jn-xylene, 4, benzene; 5, chloroform; 6, carbon tetrachloride; 
7, ether; 8, heptane. 

1906, van L?aar6 gave an equation based upon the van der Waals equation 
of state for mixtures, which in our notation reads 

RT In O2 = RT In N2 + C*N*/(1 + mi)2 

where a and r are functions of the van der Waals "constants." When 
the van der Waals " b " is the same for the two components this reduces to 

RT In (H = RT In N2 + «N2 

The term aN2 is intended to represent the partial molal heat of mixing, 
and would be independent of temperature if the van der Waals equation 
were strictly applicable. 

More recently van Laar and Lorenz7 have published a derivation of 
* Margules, Sitzb. Wien. Akad., [2] 104, 1243 (1895). 
6 Porter, Trans. Faraday Soc, 16, 336 (1921). 
6 Van Laar, "Sech Vortrage iiber das thermodynamische Potential," Vieweg und 

Sohn, Braunschweig, 1906; cf. also Z. physik. Chem., 72, 723 (1910), 
7 J. J. van Laar and R. Lorenz, Z. anorg. allgem. Chem., 145,239 (1925). 
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the above equation. Experimental tests of their equations have rarely 
been made by the van der Waals "school" beyond the mere citing of sys­
tems which conform as to type, and the present case is no exception. I t 
is also unfortunate that the generally accurate thermodynamic methods 
employed in Holland have been so inextricably bound up with an in­
adequate equation of state. 

Shortly before the publication of the previous paper by the writer on 
this subject, there appeared an important paper by Heitler8 in which 
the simplified equation given by van Laar was derived without reference 
to the van der Waals constants, by considering the solution as a lattice, 
examining the probability of the various arrangements of the two molec­
ular species therein, and by the aid of certain other assumptions that 
cannot be repeated here. He tested the formula by showing that the 
isotherms for the vapor pressure of five mixtures can be calculated with 
fairly good agreement by getting the heat of mixing from the curve itself, 
although the agreement with the experimental heat of mixing was not at 
all good. He further applied the formula to the calculation of the liquid-
liquid solubility curve, and tested it with existing data for eight systems, 
finding that the experimental curves are in all cases somewhat natter. 

Most of the systems cited by Heitler involve one more or less polar 
constituent and one involves solvation. The writer believes it to be im­
portant in this connection to distinguish the systems here designated as 
regular from those involving solvation or association, in order to gain a 
correct prediction of the temperature effect, and also that the change in 
volume on mixing should be taken into consideration. The following 
simple considerations are advanced regarding the entropy of regular 
solutions. 

If a solution is ideal, in the sense of obeying Raoult's law, the change in 
free energy corresponding to the transfer of a mole of component X2 

from the pure liquid state to a large amount of solution, in which its mole 
fraction is N2, is

9 

P2 - F° = RT In N2 (1) 

The corresponding entropy change is 

O2 — \ = -r= = R In N2 (2) 

which thus depends upon composition only. From the standpoint of 
the interpretation of entropy in terms of probability, we can say that a 
mixture represents a more probable state for such a system than do the 
separate liquids. Now suppose that the component X2 is transferred 
from an ideal solution to any regular solution in which it has the same 

8 Heitler, Ann. Physik, [4] 80, 630 (1926). 
9 Ref. 2b, p. 29. 
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mole fraction. From our picture of a regular solution as one in which 
orienting and chemical effects are absent, and in which the distribution 
and orientations are random, just as in the ideal solution, we may conclude 
that the probability of X2 is the same in the two solutions and, therefore, 
that the difference in entropy is zero. We cannot expect this conclusion 
to hold unless the random distribution of the molecules persists. We may 
expect, further, that a small correction should be applied to take care of 
the change in entropy accompanying changes in volume, given by 

(£X -(SX 
or we may state our principle in the following form. A regular solution 
is one invoking no entropy change when a small amount of one of its com­
ponents is transferred to it from an ideal solution of the same composition, 
the total volume remaining unchanged. Let us examine the consequences 
of this simple postulate. 

When one mole of X2 is transferred from the pure liquid to a regular 
solution, the change in free energy is 

F2 — F2° = RT In O2 (4) 

where a2 is the activity of X2 in the solution referred to the pure liquid as 
the standard state. The change in free energy in transferring one mole 
of X2 from the ideal solution to a regular solution is found by subtracting 
Equation 1 from Equation 4, giving 

F2 - F2- = RT In - (5) 
N 2 

The corresponding entropy change is zero, according to our postulate, 
except for the volume correction, hence the right-hand member of Equation 
5, as a first approximation, is not a function of temperature, and is equal 
to the partial molal heat of mixing 

F2 - F2 = H2 (6) 

This is, however, a function of composition, the approximate form of 
which has been derived by Heitler as parabolic. This follows, also, in 
a less rigid way, from the following simple considerations. The excess 
of heat content of a mole of regular solution over an ideal solution, AH, 
may be expected to be greatest in an equimolal mixture, falling off con­
tinuously to zero at the ends, as shown in Fig. 2. A simple equation for 
the course of such a curve is AF = 6N1N2, where 6 is a constant. Since 
Ni + N2 = 1, either mole fraction could be eliminated, but we prefer to 
keep the symmetrical form. From the definition of partial molal quan­
tities, it follows that 

H2 = 6NJ, and Hi = JN2
2 (7) 

Substituting in Equation 5 by the aid of 6, we get 

RTIn- = 6NJ (8) 
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and the same, with subscripts interchanged, for the other component. 
One may prefer to express 02/N2 as 7, the activity coefficient. 

The parabolic shape of the exponential term is illustrated by figures 
in Ref. 2b, pp. 43, 49 and 63. 

In cases where the system proves unsymmetrical, we may add higher 
powers of Ni and write Equation 8 as 

In g - j ^ (tai + en? + ) O) 

where b, c, etc., are not functions of temperature, except for the correction 
due to volume changes, which we shall, in general, neglect. The corre­
sponding equation for the other component then becomes, by the aid of 
the Duhem equation 

10S-SfO+!')5* + CN* + (10) 

We will examine extensive experimental evidence in support of this for­
mulation, using the simpler Equation 8, so far as possible. 

Fig. 2.—Relation between mole fraction and heat of mixing per mole. 

Solubilities in Regular Solutions.—We can test Equation 8, first, 
by the use of solubility data, provided that they cover a considerable 
range in temperature. Since the activity of the solute, O2, is the same 
in its saturated solutions in all solvents, including those in which it obeys 
Raoult's law, we may write a2 = N2, where N2 is the solubility in the ideal 
solution, which can be calculated by the aid of a knowledge of the melting 
point and heat of fusion of the solute. Equation 8 thus becomes 

l n £ ~ Rf 
which may be written 

l o g N2 - T 

(11) 

(12) 

where k = 0.43436/i?. 
We will first apply this equation to data upon the solubility of sulfur 

in various solvents published by Hildebrand and Jenks,10 together with 
10 Hildebrand and Jenks, THIS JOURNAL, 43,2172 (1921); cf. also ref. 2b, p. 151. 
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some data by Etard reproduced in the same paper. Table I contains 
values for 100 N2, the mole per cent, of sulfur in the solutions, and the 
corresponding value of k calculated from the solubilities. It will be seen 

TABLE I 

VALUES OP k = b/2,302R FOR SULFUR SOLUTIONS 
Solvent 

CCl4 

C7H1J 

CeHsCHs 

W-C6H4(CHs)2 

C2H4BrJ 

CsHj 

(C2H4Cl)2S 

t 

10ON2 

k 
IOONJ 

k 
10ON2 

k 
10ON3 

k 

t 

10ON2 

k 

t 

10ON2 

k 

t 

10ON2 

k 

0 

0.203 
529 

25 

0.500 
529 

35 

0.697 
528 

45 

0.966 
527 

0.0484 0.1413 0.2005 0.274 
696 

0.324 
474 

9 

1.253 
354 

8 

0.368 
493 

24 

0.922 
448 

688 
0.734 

479 
0.825 
466 

22 

1.77 
331 

21 

0.557 
498 

43 

1.525 
458 

689 
0.995 

483 

40 

3.26 
356 

39 

1.029 
495 

54 

2.13 
456 

693 
1.330 

483 
1.523 
475 

50 

4.77 
342 

65 

2.18 
497 

61 

2.72 
450 

54 

1.212 
528 

3.363 
694 

1.797 
480 

72 

9.42 
339 

72 

2.79 
487 

74 

3.88 
452 

Mean k 

528 

692 

480 

471 

95 

24.05 
334 

100 

6.07 
485 

85 

5.87 
(439) 

Mean k 

343 

493 

453 

that, in spite of the large variations in N2 and t, the value of k is remarkably 
constant. I t is true that N? does not vary greatly from 1, hence the 
constancy of k does not indicate at all certainly that the system is to be 
described by Equation 8 rather than Equation 9. I t is even conceivable 
that the constancy of k is only apparent, due to a canceling of a variation 
with temperature and a more complex variation with N1. That this 
should be the case in so many systems is, however, very improbable, or 
is, at any rate, an effect of a higher order, not seriously interfering with 
the practical value of the simpler Equation 8. Moreover, we shall see 
evidence later in which Ni undergoes large variations with but little effect 
on k. 

There appears to be a slight increase in k with increasing temperature 
for xylene, and a -slight decrease for benzene. This is borne out by the 
fact that the critical mixing temperature with benzene is lower than that 
with xylene, indicating a crossing of the solubility curves at higher tem­
peratures. I t is noteworthy that this is in harmony with the correction 
for volume change given in Equation 3. The volume of liquid sulfur 
at 20° is 135 cc. (extrapolated), while the partial molal volumes of sulfur 
in the solvents benzene, toluene and xylene at 25° are, respectively, 138.7 
cc, 133.4 cc. and 123.6 cc, indicating an expansion in forming the benzene 
solution and a contraction for the xylene solution. 
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Further evidence is furnished by the solubility data for violet solutions 
of iodine, which are taken from a paper by Hildebrand and Jenks.11 Table 
II gives, as in Table I, the values of k for a series of temperatures. As 
in the previous table, k shows a very satisfactory constancy. In the case 
of carbon disulfide, the variation in Ni is sufficient to make a considerable 
difference between N2 and NS, which are 0.83 and 0.75, respectively, at 
the highest concentration, showing that the equation with N2 only suffices. 
I t is interesting to state two further facts. The first is that the value of 
k for carbon disulfide falls to 181 at - 2 0 ° and to 106 at - 6 3 ° , but in 
this region the solution becomes brown and is no longer regular. Arsenic 
trichloride, which likewise gives brown solutions, behaves similarly, 
giving for k, 337 at 96°, 112 at 15° and 93 at 0°. The second fact is that 
while k remains constant for carbon disulfide solutions between 0 and 40°, 
there is a slight falling off for both heptane and carbon tetrachloride. It 
is possible, however, to correlate this behavior with the effect of volume 
changes mentioned earlier. From measurements of the density of these 
solutions made by Dawson,12 we have calculated the partial molal volumes 
of liquid iodine in heptane, carbon tetrachloride and carbon disulfide to 
be, respectively, 63.9, 65.8 and 61.1 cc, which may be compared with the 
volume of 58.5 cc. for the extrapolated molal volume of liquid iodine. 

TABLE I I 

SOLUTIONS OP IODINE—VALUES OF k 

t - 6 3 - 2 0 
I n C7H16 . . . . . . 

In CCl4 

In CHCl3 

In CS2 (106) (181) 

Solubilities of naphthalene have been determined by Ward13 over a 
wide temperature range. Table III gives random selections from his 
data for two non-polar solvents, hexane and carbon tetrachloride. Here 

TABLE II I 

SOLUTIONS OF NAPHTHALENE 

In Hexane 

t 8.7 27.7 45.8 58.4 64.6 Mean k 
10ON2 6.20 13.18 28.7 50.8 66.0 
k 158 155 149 152 146 152 

In Carbon Tetrachloride 

( 0 .4 13.0 19.5 28.2 39.5 64.8 
10ON2 11.95 17.8 21.7 28.2 38.9 73.1 

k 35 37 37 38 35 37 37 

0 
457 
395 
302 
188 

18 

298 

25 
452 
386 

190 

30 

299 
192 

35 
448 
389 

40 

191 

50 
443 
384 

11 Hildebrand and Jenks, T H I S JOURNAL, 42, 2180 (1920); cf., also, ref. 2b, p. 148 
12 Dawson, / . Chem. Soc, 97, 1046 (1910). 
13 Ward, / . Phys. Chem., 30, 1316 (1926). 
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the concentrations of naphthalene become very high, so that the use of a 
CNi term would lead to very different results. 

The data for stannic iodide obtained by Dorfman and Hildebrand14 

offer further opportunity for testing the equation. Unfortunately, we 
have no direct value for the heat of fusion of stannic iodide wherewith 
to calculate the ideal solubility; however, we have two ways of making 
reasonably good estimates. The first is to assume that all tetrahalides 
of this type will have about the same entropy of fusion. Table IV gives 
values of the melting points, Tm, and heats of fusion, AH„, for several such 
halides, together with their quotient, the entropy of fusion. The values 
for AHm are from Latimer,16 except the last, which is from Tolloczko.16 

Silicon tetrachloride 
Titanium tetrachloride 
Stannic chloride 
Stannic bromide 

TABLE IV 

CONSTANTS OP HAUDES 

Tm 

203.3 
: 248 

240 
303 

AHM 

1845 
2233 
2188 
2750 

AiWr, 
9.08 
9.00 
9.11 
9.08 

Mean 9.07 

If we assume that AHm/Tm for stannic iodide is also about 9.07, then, since 
Tm is 416.5, AHOT = 3775. Another estimate may be made by assuming 
that stannic iodide forms a nearly ideal solution with carbon disulfide, 
the evidence for which is given in the paper by Dorfman and Hildebrand. 
The slope of this solubility curve gives Ann = 3940. We shall select in 
round numbers 3850. Calculating the ideal solubilities from this value, 
Equation 12 gives the values of k shown in Table V, omitting the figures 
for mole per cent. 

TABLE V 

VALUES OP k FOR SOLUTIONS OF STANNIC IODIDE 

/, 0C. C*H„ CCl1 CHCIs CsH. CsHi(CHs)2 CjH1Bn 

10 434 315 305 268 249 177 
25 436 317 298 267 249 174 
40 440 313 296 261 246 171 

It is interesting to note the form of the curve given by Equation 12 
in Fig. 1, for several systems, using the mean values of k given in Table V. 
It can be seen that while the curves are nearly linear for small values of 
k, illustrated by ethylene bromide, as k becomes larger the curves take 
on the reversed S-shape noted particularly by Mortimer.3 Furthermore, 
as the value of k becomes still larger, as in the case of heptane, there appear 
three values of log N2 for a single temperature, two of which are stable 

14 Dorfman and Hildebrand, T H I S JOURNAL, 49, 729 (1927). 
16 Latimer, T H I S JOURNAL, 44, 90 (1922). 
16 Tolloczko, Chem. Zentr., 1901, I, 989. 
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corresponding to the appearance of a second liquid phase, all three phases, 
containing stannic iodide at the same activity. Above this triple point 
the solid disappears and we are in the region of two liquid phases. The 
equation thus accounts for the type of system previously encountered 
with sulfur.10 This portion of the system will be discussed in the following 
section. Illustrations similar to the above might be multiplied almost in­
definitely, but that is hardly necessary. 

Two-Phase Liquid Systems.—Equations 8, 9 and 10 invite application 
to systems of incompletely miscible liquids, as has been done by Heitler. 
Part of this section parallels his work, but this is done for the sake of 
completeness. We have as the condition of equilibrium that the activity 
of each component is the same in both phases, that is, a[ = d[ and a'2 = 
a"2, where the primes distinguish the two phases. Equation 9 then gives 

In O2' = In Nj + gj, Ni'2 = In a," + In N2' + ^ Ni»2 

from which, since N1- + N2- = 1, and N1- + N2» = 1, we get 

Equation 9 for component 2 is identical except for the exchange of sub-
„, . . 1 — Ni' 1 — N2' scripts. The two equations are simultaneous when = = 

, 1 — Ni 1 — N2 
Ni 
—-, when Ni" = N2' = 1 — N / . Substituting this in the above gives 
Ni 

fc1-^-*?'1-2"0 (13) 

which can be used for calculating the composition of the liquid phases 
when b is known, or vice versa. The former calculation, unfortunately, 
requires the method of successive approximations, so it is best to calculate 
T from given values of b and N. This equation becomes indeterminate 
at the critical mixing temperature, Tc, so that it is best to relate T0 to N 
in the following way. 

At the critical mixing point, we have the conditions that17 f <— J = 0 

and ( j - 4 I = O . Applying these to Equation 8 gives RT0 = 26NiN2, 
\ON /T 

and Ni = N2 = 0.5, whence 
2RTC = b or Tc = 1.15 k (14) 

The same methods can be applied to the unsymmetrical Equation 9, 
giving, in place of Equation 13, two simultaneous equations requiring a 
graphic solution, and in place of Equation 14 two equations giving b and 
c in terms of T0 and the critical composition, from which calculation can 
be made in either direction. The discussion will be confined, however, 
to the simpler symmetrical case given by Equations 13 and 14. 

" Ref. 2b, p. 55. 
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The solubility of stannic iodide in heptane between 10 and 40° gives 
k = 437. If we assume that there is no entropy of expansion and that 
k remains constant to the region of two liquid phases, above about 125°, 
we would have from Equation 13 the liquid solubility curve shown in 
Fig. 1, with a critical mixing temperature of 230°, instead of the experi­
mentally determined value of 137°.18 This discrepancy would be reduced 
somewhat, 10°, by the use of the unsymmetrical equation, and the un­
certainty regarding the heat of fusion of stannic iodide permits of some 
variation between the two figures. We have noted, however, some 
tendency of k to diminish with rising temperature, and have seen in Equa­
tion 3 a reason why it should. I t is evident, therefore, that an extrapo­
lation of over 100° from solid solubility to critical mixing temperature 
would be extraordinarily sensitive to slight changes in k. If we calculate 
k from the critical mixing temperature by Equation 14, we get 356, while 
around 25° we found 437. The drift may be expressed by using k = 
643 — 0.7T. If we use 356 as constant to calculate the liquid solubility 
curve, it is especially significant that, although this gives the correct 
critical temperature, the descending branches are too near together, while 
if we use the slightly variable k, the spread of the curve is nearly satis­
factory, bringing the liquid and solid curves into approximate agreement. 
The values of k in Table V indicate that instead of the variation being 
linear with T, a more rapid variation exists; this would satisfy also the 
experimental points for the liquid-liquid system. 

Mr. A. Wachter, at the author's request, has made a determination of 
the solubility of stannic iodide in wo-octane (2,2,4-trimethylpentane) at 
25°, getting for the mole per cent, of stannic iodide 0.3399 and* 0.3441, 
mean 0.342. This gives a value of k of 503. The critical solution tem­
perature for the two liquid phase system is 195°, from which we can cal­
culate k from Equation 14 to be 407. If the change of k with T is assumed 
to be linear, we can write k = 671 — 0.565T, which very nearly accounts 
for the experimental points, although here again a slightly more rapid 
variation with T would be required to give perfect agreement. 

Sulfur solubility curves suggest an application of these same equations 
and a number of calculations have been made with results agreeing about 
as well as with stannic iodide. They are not here reproduced, however, 
since the presence of S11 in the liquid adds a considerable complication. 

The E.m.f. of Concentration Cells.—The measurements made in this 
Laboratory by Taylor19 on the e.m.f. of molten alloy concentration cells 
and their temperature coefficients offer a peculiarly direct check on the 
existence of regular solutions of the sort conforming to our definition. 
A cell consisting of a pure metal and its alloy with a nobler metal, as 

18 Dice and Hildebrand, T H I S JOURNAL, SO, 3023 (1928). 
19 N. W. Taylor, T H I S JOURNAL, 45, 2865 (1923); of. also ref. 2b, Chap. XVI. 
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electrodes, separated by an electrolyte containing the ion of the baser 
metal, has an e.m.f. given by the equation 

E = g l n a 2 (15) 

Combining this with Equation 9 gives 

E - J J In N2 + JN1
2 + m[ + (16) 

The temperature coefficient of the cell is then 

dE R , 
dT = N F l n N ' (17) 

that is, the temperature coefficient is the same as for an ideal solution 
of the same composition. That various alloys obey this relation remark­
ably well is shown in Table VI. This is all the more striking because 
only the first alloy conforms to Equation 8, the other two requiring the 
more complicated Equation 9. What difference there is is in the direction 
expected, that is, the observed values are greater. 

TABLE VI 

TEMPERATURE COEFFICIENTS OF E.M.F. OF ALLOY CONCENTRATION CELLS, IN MILLI-

Mole per cent, of Cd 
dE f (obs.) 
d r \ (calcd.) 

MpIe per cent, of Cd 
dE f (obs.) 
d r \ (calcd.) 

Mole per cent, of Zn 
dE ( (obs.) 
d r \ (calcd.) 

VOLTS PER DEGREE 
Alloy, Cd-Sn 

8.35 25.8 
0.0113 0.067 

.0107 .058 

Alloy, Cd-Pb 
12.3 26.9 
0.095 0.063 

.090 .057 

Alloy, Zn-Cd 
15.0 25.1 
0.079 0.061 

.082 .C60 

56.9 
0.030 

.025 

50.9 
0.036 

.026 

34.4 
0.047 

.046 

63.0 
0.026 

.020 

69.1 
0.016 

.016 

Not all such solutions are regular. The alloys of zinc and tin, and also 
of cadmium and bismuth, investigated by the same author, are irregular. 
This is not surprising in view of the departure of each, especially the latter, 
from the usual type of relation between log (O/N) and N. 

Other Relations. 1. The Heat of Solution.—When the tempera­
ture of a saturated solution of X2 is changed, saturation is maintained 
by having the change in fugacity of the solid phase, with the temperature 
only, equal to the change in fugacity of the same substance in solution, 
due to changes in both temperature and composition. Formally expressed 
this gives 

d l n , = d l „ / 2 = ( ^ ) N d r + ( ^ ) r d l n : N2 
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But 
d In f! = H2* - H2

8 I n J 2 _ H2* - H2 

d r ~~ RT2 T ~ RT2 

where H* and H2 are the heat contents of the vapor and solid, respectively, 
and H2 is the partial molal heat of solution; we can write, therefore 

Hs ~ H2- = /C)InJ2N d i n N2 
RT2 \d lnN2/ r d r Ka) 

For regular solutions, the partial differential can be obtained from Equa­
tions 8 or 9. Using the latter, and remembering that /2/Z2 = (h, where 
/2 is the fugacity of the pure liquid, we get 

/MnJ2N _ 2b N1N2 

VdInN2A RT u a ; 

where Ni + N2 = 1. This equation expresses the deviation of a system 
from either Henry's law, /2 = ZN2, where / is a constant, or from Raoult's 
law, where the constant becomes /2 . It occurs frequently in the deriva­
tions of thermodynamic equations. It should be noted that (5 In /2 /-
d In N2)T approaches unity, first, when b approaches zero, that is, when 
Raoult's law is obeyed throughout the entire range of composition; second, 
when either Ni or N2 approaches zero, that is, when the solution is very dilute 
in either component. Only under these conditions, therefore, does the 
slope of the solubility curve, log N2 vs. 1/T, give directly the heat of solu­
tion. The equation for the heat of solution results from the substitution 
of Equation 19 in 18, giving 

H2 ~ H2 / _ 26NiN2N d i n N2 

RT \ RT ) d r iZU; 

In view of the form of the curve for large deviations from ideal shown in 
Fig. 1, it is evident, as stated earlier, that a straight line drawn through 
the melting point gives a very erroneous value for the heat of solution. 
On the other hand, the tangent to the curve when log N is small gives 
the heat of solution rather accurately. 

2. The Heat of Mixing.—In deriving Equation 8, the assumption 
was made that the heat of mixing is given by an equation such as 7. It 
may, of course, prove necessary in dealing accurately with some regular 
systems to add higher powers of N. Data upon heats of mixing are very 
meager, but the evidence is favorable for the approximate equality of 
free energy and heat of mixing. Taylor19 pointed this out in connection 
with his measurements, and more recently Butler20 has given a more 
quantitative calculation based upon these same measurements. 

It is noteworthy that Equation 16 becomes equivalent to the well known 
Cady21 equation, in view of the identification of the terms &N? + CN̂  + . 

20 Butler, T H I S JOURNAL, 47, 117 (1925). 
21 Cady, J. phys. Chem., 2, 551 (1898). 
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with the heat effect. The failure of this equation to give a more complete 
agreement with the experimental data we attribute to its application to 
irregular systems, and to the use of concentration instead of mole fraction 
to express composition. 

3. Volume Change on Mixing.—Differentiating Equation 8 with 
respect to the pressure, P, upon the liquid phase at constant N and T gives 

/5 In aA _N? d& 
V Z)P )X,T RTdP 

(the second differential is not written as a partial since b is practically 
independent of N and T) but this is equal22 also to (V2 — v3)/RT, where 
V2 is the molal volume and V2 the partial molal volume. We therefore 
write 

V, - Vs = Nf - jp (21) 

This harmonizes with a relation discovered by Biron23 that the expansion 
of two liquids upon mixing to form a mole of mixture is 

A F = (Vi — Vi)Ni + (V2 — V2)N2 = .KNiN2 

where K is d&/dP. It also gives justification for the relation discovered 
some years ago by the writer24 

In a± = K'{v, - V2) 
N 2 

where K' is an empirical constant. Comparing this with Equation 8 
gives 2£'(v2 — V2) = for2. Combining with Equation 21 gives K'^\(Ab/-
dP) = for2 or (d In b/dP) = (I/K), that is, K' is a constant for a given 
system calculable from b and its change with pressure. 

4. The Gibbs adsorption equation is 

( s f e ) " " % * r (22) 

where y is the surface tension of a solution, and % the amount of adsorbed 
solute per cm.2 of surface. The partial differential signifies constant 
surface. We may write the mathematical identity 

Vd In N2/ \ d In / , / \ d In N2/ 

The first differential on the right is given by Equation 22, and the second 
by Equation 19, giving 

^ = -^0-^) •<*> 
This equation is usually written with the concentration in place of the 
mole fraction and without the term in parenthesis. The omission of this 
correcting term may be serious, for it is those solutions which deviate 

22Ref.2b, p. 61. 
23 Biron, / . Russ. Phys.-Chem. Soc, 44, 1264 (1912). 
2« Cf. ref. 2b, pp. 61-65. 
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most strongly from Raoult's law (that is, which show a large value for b) 
that show large adsorption. Of course this is compensated by the fact 
that when the solution is very dilute, N2 = 0, and the correcting factor 
approaches unity. The usual neglect of the deviation from the ideal solu­
tion is undoubtedly partly responsible for the lack of agreement often 
found when testing the Gibbs equation in the simplified form. Equation 
23 offers a simple means for making the correction for regular solutions. 

Evaluation of the Constant.—The application of the various equations 
given in this paper requires, of course, the evaluation of the constant 
b, or, when necessary, additional constants in Equation 9. The numerous 
solubility data already discussed by the author show clearly that the de­
viations from ideality, now expressed by the magnitude of b or k, are 
rather closely determined by the difference in internal pressure of the two 
components. There is evidence, however, that this is not the only factor 
and efforts are being made to formulate the exact relation between b 
and internal pressure. This study demands certain experimental data 
that we are now endeavoring to secure, after which it is hoped that a report 
upon the subject may be made. 

Meanwhile, it would be possible to give an improved substitute for 
Mortimer's table of solubility "factors" by constructing a table of internal 
pressure functions that would give values of k by difference. This is 
too long a task for inclusion with this paper, but anyone confronted with 
problems involving regular solutions may make rather good estimates 
of the constant upon an additive basis by the aid of existing data involving 
other systems. Again, where a single experimental point involving the 
activity of a system is at hand, its general behavior can be calculated. 

In plotting activity data, it has been pointed out26 that log (at/xz) 
(or log 72, where 72 is the activity coefficient), when plotted against mole 
fraction, gives a simple expression for deviations from ideality. I t is 
becoming rather general practice, even with aqueous solutions, which 
are far from regular, to plot log 7. The present treatment suggests that 
where temperature changes are involved the most advantageous function 
to plot would be T log 72 against N*. 

Summary 

1. Certain solutions of a common solute in various solvents which 
give families of solubility ctirves, and from which chemical effects and 
association changes are absent, are designated as regular solutions. They 
are defined as solutions in which no change in entropy, except for the 
small entropy of expansion, is involved in the transfer of a constituent 
from it to an ideal solution of the same concentration. 

2. An equation given by van Laar upon the basis of the van der Waals 
* Ref. 2b, Chap. V. 
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equation of state, and recently derived by Heitler upon different assump­
tions, is applied to a large number of solutions with very satisfactory 
results. 

3. The equation is applied to the calculation of other properties de­
pendent upon activity, including the e.m.f. of concentration cells, the 
heat of solution of solids, the expansion on mixing and the Gibbs ad­
sorption equation. 
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The photochemical decompositions of many organic acids have been 
studied in some detail. Of these none has received more attention than 
the decomposition of oxalic acid. I t is not necessary, at the present time, 
to summarize all of the work that has been done.1 Earlier work on the na­
ture of the products formed has been shown by Allmand and Reeve2 not to 
agree with the composition of the products formed during the early stages 
of the reaction. These authors show that the principal reaction consists in 
the formation of formic acid and carbon dioxide. Since the former may be 
decomposed photochemically, other products would result with long 
exposures. They found, further, that the quantum efficiency varied 
with wave length, the highest value obtained being 1/100 at 265 m/u-
Anderson and Robinson3 report an average yield of 1/1392 molecule per 
quantum for radiation from a quartz mercury arc lamp. 

The photochemical decomposition of oxalic acid sensitized by uranyl 
salts has also received considerable attention. Measurements of quantum 
efficiency of the sensitized reaction are somewhat at variance, but the 
best evidence indicates that the value is approximately one.4'5 Biichi,4 

from a consideration of his determinations of the rate of photochemical 
decomposition of oxalic acid in solutions of varying concentration and with 
various amounts of uranyl sulfate, has come to the conclusion that a com­
plex molecule, or a molecule of uranyl oxalate, is the photosensitive mole-

1 Kistiakowsky, "Photochemical Processes," The Chemical Catalog Co., Inc., New 
York, 1928, pp. 146, 229, has given a partial summary of recent work on this reaction. 

2 Allmand and Reeve, J. Chem. Soc, 129, 2834 (1926). 
3 Anderson and Robinson, T H I S JOURNAL, 47, 718 (1925). 
4 Biichi, Z. physik. Chem., I l l , 269 (1924). 
5 Bowen and Watts, J. Chem. Soc, 127, 1607 (1925). 


